Description
Prólogo a la serie
Prólogo
Introducción
Capítulo 1. Conceptos fundamentales de la lógica matemática y de la teoría de conjuntos
1.1. Sintaxis del lenguaje de los símbolos matemáticos y lógicos
1.1.1. Nombres de objetos
1.1.2. Forma nominal
1.1.3. Proposiciones
1.1.4. Forma proposicional
1.2. Sobre la clasificación de los enunciados y la teoría de silogismos de Aristóteles
1.2.1.
1.2.2*
1.3. Sobre el concepto de conjunto
1.3.1.
1.3.2.
1.3.3.
1.3.4.
1.4. Relaciones y funciones
1.4.1.
1.4.2.
1.4.3.
1.4.4.
1.5. Estructuras matemáticas
1.5.1.
1.5.2.
1.5.3.
1.5.4.
1.6. Álgebra booleana
1.6.1.
1.6.2.
1.6.3.
1.6.4.
1.6.5.
1.6.6.
1.6.7.
1.6.8.
1.6.9.
1.7. Lógica proposicional
1.7.1.
1.7.2.
1.8. Cálculo proposicional
1.8.1.
1.8.2.
1.8.3.
1.9. Sobre la lógica de predicados
1.9.1.
1.9.2.
1.9.3.
Capítulo 2. Lenguajes lógico-matemáticos. Leyes lógicas
2.1. Lenguaje de primer orden. Fórmulas y términos
2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.
2.1.7.
2.1.8.
2.1.9.
2.1.10.
2.1.11.
2.1.12.
2.2. Sobre la sustitución correcta de términos en las fórmulas
2.2.1.
2.2.2.
2.2.3.
2.2.4.
2.2.5.
2.2.6.
2.2.7.
2.2.8.
2.3. Semántica del lenguaje. Verdad en un modelo
2.3.1.
2.3.2.
2.3.3.
2.3.4.
2.3.5.
2.3.6.
2.3.7.
2.4. Ejemplos de lenguajes y modelos
2.4.1.
2.4.2.
2.4.3.
2.4.4.
2.4.5.
2.5. Leyes lógicas
2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.
2.6. Aplicaciones de la teoría de los lenguajes lógico-matemáticos. Forma prenexa. Formas normales disyuntiva y conjuntiva. Lenguajes de la lógica proposicional y de la lógica de predicados
2.6.1.
2.6.2.
2.6.3.
2.6.4.
Capítulo 3. Teorías axiomáticas formales
3.1. Cálculo de predicados
3.1.1.
3.1.2.
3.1.3.
3.1.4.
3.2. Teorema de deducción. Técnica de deducción natural
3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.
3.2.7.
3.2.8.
3.2.9.
3.2.10.
3.3. Teorías axiomáticas formales. Ejemplos de teorías axiomáticas formales
3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.3.7.
3.3.8.
Приложение 1. Códigos con corrección de errores
Приложение 2. Esquemas de contacto
Bibliografía
Índice de autores
Índice de materias
Prólogo
Este libro fue ideado como un primer curso de lógica matemática, escrito sobre la base de las lecciones impartidas por los autores como parte del curso (de un semestre) de lógica matemática que se ofrece a los estudiantes del primer curso de la Facultad de Mecánica y Matemática de la Universidad Lomonósov de Moscú. El objetivo de los autores es dar a conocer al lector los conceptos fundamentales de la lógica matemática, los cuales son de importancia para los matemáticos de todas las especialidades. Una gran atención se dedica al uso correcto de las notaciones exactas utilizadas en la lógica matemática para la escritura de las afirmaciones matemáticas, así como a las leyes lógicas, los fundamentos de la teoría de conjuntos y la teoría de algoritmos.
El presente libro contiene tres capítulos y forma la primera parte del curso escrito por los autores.
El primer capítulo constituye por sí mismo un curso inicial mínimo de lógica matemática; al final del libro se presentan dos anexos relacionados con diferentes aplicaciones prácticas del material del primer capítulo (códigos con corrección de errores y esquemas de contacto). En el segundo capítulo se analiza la semántica de los lenguajes lógicoÍmatemáticos desde un punto de vista más específico. El tercer capítulo está dedicado a la deducibilidad deducibilidad en la lógica de predicados y a las teorías de primer orden. Aquí se discuten algunos resultados importantes de la lógica matemática. Las demostraciones correspondientes se darán en la segunda parte del curso (véase), donde se estudian los principios de la teoría de conjuntos y la teoría de algoritmos, el teorema de completitud de Gödel en el cálculo de predicados, y se examina el programa de Hilbert de fundamentación de la matemática.
El estudio del curso de lógica matemática supone la resolución de ejercicios y problemas en las clases prácticas. Para esto se recomienda utilizar el libro de problemas. Todos los problemas mostrados en el texto son fáciles y no pueden sustituir los problemas del libro recomendado.
En el libro se utilizan las siguientes notaciones. El símbolo $..$ indica el inicio de una demostración, mientras que el símbolo $\pp$ denota su final. Los signos $\bydef$, $\Rightarrow$, $\Leftrightarrow$ sustituyen las frases “por definición”, “si…, entonces”, “si y sólo si”, respectivamente. Las secciones y subsecciones marcadas con un asterisco ($\star$) pueden ser omitidas durante una primera lectura.
En este libro hemos tratado de adoptar un método “concéntrico” de exposición, es decir, los temas más importantes se discuten en varias oportunidades durante el proceso de enseñanza, y van adquiriendo paulatinamente una claridad completa.
En la segunda parte del curso (véase) la mayor atención se dedica a los resultados fundamentales de la lógica matemática, se regresa al estudio del concepto de conjunto, pero esta vez sobre la base de la teoría axiomática formal teoría axiomática formal de Zermelo–Fraenkel. De esta manera,
con ayuda de esta obra, el lector que no es especialista en lógica obtendrá una idea precisa sobre los resultados clásicos de la lógica, a la vez que el futuro especialista en esta rama de la matemática recibirá la preparación necesaria para el estudio de libros de texto más detallados.
A.N.Kolmogórov, A.G.Dragalin