•  Telephone: 511 4280448
  •  E-mail: ventas@librosmir.com
Close
Sign in Or Register
Forgot your password?

NEW HERE?

Registration is free and easy!

  • Faster checkout
  • Save multiple shipping addresses
  • View and track orders and more
Create an account
Or
Librería Científica
  • Inicio
  • Nosotros
  • Pago y Envío
  • Entrevistas
  • Bitácora
  • Contáctenos
0 item
Categories
  • Lecciones Populares
  • Preparación y Olimpiadas
  • Matemática
  • Física
  • Sinergética
  • Química
  • Astronomía
  • Mecánica – Construcción
  • Técnicos
  • Electricidad – Electrónica
  • Geología – Hidráulica
  • Medicina
  • Pedagogía – Psicología
  • Idioma ruso – Filología
  • Literatura – Sociales
  • Infantil
  • Arquitectura
  • Home
  • Matemática
  • Análisis complejo y cibernética
Catálogo de Libros
  • Lecciones Populares
  • Preparación y Olimpiadas
  • Matemática
  • Física
  • Sinergética
  • Química
  • Astronomía
  • Mecánica – Construcción
  • Técnicos
  • Electricidad – Electrónica
  • Geología – Hidráulica
  • Medicina
  • Pedagogía – Psicología
  • Idioma ruso – Filología
  • Literatura – Sociales
  • Infantil
  • Arquitectura

Análisis complejo y cibernética

Autor: Guts A.K.
ISBN: 978-5-396-00239-5.
Año: 2011
Idioma: Español
Encuadernación: Rústica

QUICK OVERVIEW

208 páginas

En el presente libro se presentan los fundamentos de la teoría de funciones de variable compleja desde el punto de vista de sus aplicaciones en las ciencias computacionales. Entre los temas tratados se destacan los números complejos, las funciones de variable compleja, los fractales y la compresión fractal, las funciones analíticas, las integrales de Cauchy, las series de Laurent y puntos singulares, así como la teoría de señales y la informática cuántica.

Este libro puede ser utilizado como material didáctico para los estudiantes que se especializan en “Seguridad computacional” y “Computadoras, sistemas complejos y redes”

S/130.00

Categoría: Matemática
  • Description

Description

Índice
1 Números complejos y funciones
1.1. Números complejos
1.1.1. Números planos
1.1.2. Resolución de ecuaciones cuadráticas y diferentes tipos de números planos
1.1.3. Números espaciales
1.1.4. Propiedades de los números complejos
1.1.5. Forma trigonométrica de un número complejo
1.1.6. Punto del infinito y plano complejo ampliado. Esfera de Riemann
1.2. Sucesiones
1.2.1. Límite de una sucesión
1.2.2. Subsucesiones y puntos límite
1.3. Series
1.3.1. Definición de serie
1.3.2. Operaciones con series
1.4. Topología del plano complejo
1.4.1. Conjuntos abiertos, entornos y topología
1.4.2. Puntos de adherencia. Adherencia
1.4.3. Conjuntos compactos
1.4.4. Regiones
1.5. Funciones de variable compleja
1.5.1. Funciones estudiadas en el análisis complejo
1.5.2. Límite de una función
1.5.3. Funciones continuas
1.6. Georg Riemann
1.7. Teorema fundamental del álgebra
1.8. Interpretación de los números complejos según Florienski
1.9. Los genios también se equivocan
2 Dinámica compleja y compresión fractal de la información
2.1. Fractales
2.1.1. Iteraciones
2.1.2. Conjuntos de Mandelbrot y de Julia
2.1.3. Fractales
2.2. Construcción de fractales sobre la base de su autosemejanza
2.2.1. El triángulo de Sierpinski
2.2.2. El copo de nieve de Koch
2.3. Compresión fractal de la información
2.3.1. Compresión de la información
2.3.2. Idea de la compresión fractal de una imagen
2.4. Fundamentos matemáticos de la compresión fractal
2.4.1. Espacio métrico
2.4.2. Teorema del punto fijo de Banach
2.4.3. Métrica de Hausdorff
2.5. Algoritmo de compresión fractal de una imagen
2.5.1. Construcción de un algoritmo
2.5.2. Algoritmo de descompresión
3 Funciones analíticas
3.1. Definición de función analítica
3.2. Derivadas parciales de las funciones de variable real
3.3. Condiciones de Cauchy–Riemann
3.4. Aplicaciones conformes
3.4.1. Curvas del plano complejo
3.4.2. Conservación de los ángulos
3.4.3. Conservación de las dilataciones
3.4.4. Aplicaciones conformes
3.5. Series de potencias
3.5.1. Definición de serie de potencias
3.5.2. Radio de convergencia
3.5.3. Adición y multiplicación de series de potencias
3.6. Representación de las funciones analíticas en forma de una serie de potencias
3.7. Las funciones ez, sen z, cos z
4 Integral de Cauchy
4.1. Definición de la integral de Cauchy
4.1.1. Propiedades de la integral de Cauchy
4.1.2. Integral de Cauchy como suma de integrales curvilíneas de segunda especie
4.2. Teorema de Cauchy
4.2.1. Regiones múltiplemente conexas y simplemente conexas
4.2.2. Teorema de Cauchy
4.2.3. Generalización del teorema de Cauchy
4.3. Cálculo de integrales complejas
4.3.1. Función primitiva
4.3.2. Fórmulas para el cálculo de integrales complejas
4.4. Fórmula integral de Cauchy
4.5. Augustin Louis Cauchy
5 Series de Laurent y puntos singulares
5.1. Serie de Laurent
5.2. Puntos singulares
5.2.1. Clasificación de los puntos singulares
5.2.2. Comportamiento de una función en un entorno de un punto singular esencial
5.2.3. Series de Laurent en un entorno de un punto singular
5.2.4. Serie de Laurent en el punto del infinito
5.3. Funciones enteras y funciones meromorfas
5.3.1. Funciones enteras
5.3.2. Funciones meromorfas
6 Teoría de señales
6.1. Definición de señal
6.2. Análisis armónico de señales
6.2.1. Desarrollo de una señal periódica en armónicos
6.2.2. Desarrollo de una señal no periódica en armónicos
6.2.3. Energía y espectro energético de una señal
6.3. Filtros y filtración de señales
6.4. Transformación de Laplace
6.4.1. Imagen del producto de dos originales
6.4.2. Paso a la transformación de Fourier
7 Residuos
7.1. Concepto de residuo
7.2. Fórmulas para el cálculo de residuos
7.3. Aplicación de los residuos al cálculo de integrales
7.4. Cálculo de integrales definidas de funciones de variable real
8 Conservación de la información y discretización de señales
8.1. Discretización de una señal
8.2. Espectro de una señal discretizada. Teorema de Kotiélnikov
8.3. Serie de Kotiélnikov
9 Funciones especiales complejas
9.1. La función zeta de Riemann y los números primos
9.1.1. Distribución de los números primos
9.1.2. La hipótesis de Riemann
9.2. Funciones L de Dirichlet
9.2.1. Hipótesis generalizada de Riemann
9.2.2. Criptografía, criptoanálisis e hipótesis generalizada de Riemann
9.3. Función delta de Dirac
9.4. Oliver Heaviside
10Informática cuántica
10.1. Arquitectura básica de una computadora
10.2. Elementos lógicos
10.2.1.Elemento no clásico “sqrt(NO)”
10.2.2. Elementos lógicos cuánticos: puertas
10.2.3.Cálculos cuánticos paralelos
10.3.Mecánica cuántica “ingenua”
10.3.1. Estados
10.3.2.Principios de la mecánica cuántica “ingenua”
10.4. Computadora cuántica
10.5. Esquema de funcionamiento de una computadora cuántica
10.5.1. Entrada de los datos iniciales
10.5.2. Cálculo
10.5.3. Salida de los resultados
10.6. Criptografía cuántica
10.7. Iuri Manin
10.8. David Deustch
10.9.Fundamentos matemáticos de la mecánica cuántica
10.9.1. Espacio de Hilbert
10.9.2. Vectores bras y kets
10.9.3. Operadores lineales
10.9.4.Postulados de la mecánica cuántica
10.9.5.Interpretación de Everett de la mecánica cuántica
Bibliografía
Índice de autores
Índice de materias
Alexandr Konstantínovich Guts
Terminó sus estudios en la Universidad Estatal de Novosibirsk. Matemático, Doctor en Ciencias Físico-Matemáticas. Profesor de análisis matemático. Jefe del Departamento de Cibernética de la Universidad Estatal de Omsk. Decano de la Facultadla Facultad de Ciencias Computacionales.

Sus investigaciones abarcan:

teoría matemática del espacio-tiempo, teoría cuántica del tiempo;
teoría general de la relatividad, teoría de la máquina del tiempo, evolución de la geometría y la topología del espacio;
simulación matemática de los procesos étnicos, sociales y psíquicos;
historia de múltiples versiones e historia teórica.
Страницы (пролистать)

Libros relacionados

Análisis funcional: Curso avanzado

S/175.00 S/165.00

problemas-ejercicios-analisis-matematico-demidovich

Problemas y Ejercicios de Análisis Matemático

Manual de matemáticas para ingenieros y estudiantes

S/180.00 S/140.00

algebra-lineal-preguntas-problemas

Álgebra Lineal. Preguntas y Problemas

golovina_algebralineal

Álgebra Lineal y algunas de sus aplicaciones

REGÍSTRATE

y recibe nuestras novedades y promociones

Mi Cuenta

  • Pagos
  • Mi Cuenta
  • Mi Carrito

Información

  • Inicio
  • Nosotros
  • Pago y Envío
  • Entrevistas
  • Bitácora
  • Contáctenos

Contáctenos

Horario de atención: De Lunes a viernes de 10.00 a.m. a 5.00 p.m.
Sábados: De 10:00 a.m. a 2:00 p.m.
  •  Jr. Ica 441 Int. 101 Cercado de Lima, Perú
  •  Teléfono: (511) 428 - 0448     +51 9 92 890 471
  •  E-mail: ventas@librosmir.com
Alta calidadCon títulos novedosos
AsistenciaAtendemos pedidos a todos los países
DeliveryEnvío a todo el mundo
SeguimientoMonitorice su pedido
Compra seguraPague en el exterior con Paypal
© 2005 - 2024 Librería Científica. Desarrollado por eCreative
Pago seguro con Paypal Perú

PARA COTIZACIONES Y VENTAS A OTROS PAÍSES ESCRIBIR A VENTAS@LIBROSMIR.COM / WHASTAPP +51 9 92890471 Dismiss

x
  • Menu
  • Categories
  • Inicio
  • Nosotros
  • Pago y Envío
  • Entrevistas
  • Bitácora
  • Contáctenos
  • Lecciones Populares
  • Preparación y Olimpiadas
  • Matemática
  • Física
  • Sinergética
  • Química
  • Astronomía
  • Mecánica – Construcción
  • Técnicos
  • Electricidad – Electrónica
  • Geología – Hidráulica
  • Medicina
  • Pedagogía – Psicología
  • Idioma ruso – Filología
  • Literatura – Sociales
  • Infantil
  • Arquitectura
Powered by Joinchat
Hola, ¿en qué podemos ayudarte?
Abrir chat